

Hashemite University College of Engineering Department of Electrical Engineering EE 361- Electric Machines I (3 Credit Hours/Dept. Compulsory)

Instructor		Grading info		Class Info		
		Mid	40%	Days		
Email:	Wafaa.al-sharo3@hu.edu.jo			Time		
Office:		Quiz/Att	20%	Location		
		Final	40%			
Office hours:						
Course						
Course Number:	110409361					
Prerequisite:	Electromagnetic					
	(Amperes Law/ Magnetic Field)					
Textbook:	Electric Machinery Fundamentals, by Chapman, 4th edition, McGraw Hill, 2005.					
Course Description:	The course provides the students foundation knowledge of the magnetic fields and					
	magnetic circuits. The construction and principle of operation of different types of					
	transformers are investigated. It also outlines different types of DC and AC machines,					
	their construction, classification and performance characteristics under different loading					
	conditions.					
Specific Outcomes of	1) Analyze magnetic circuits. (a)					
Instruction (Course	2) Describe construction and applications of different types of transformers. (e)					
Learning Outcomes):	3) Analyze terminal characteristics of transformers. (a,j)					
Learning Outcomes).	4) Describe construction and applications of different types of DC and AC machines					
	(Synchronous Generator and Three-Phase Induction Motor). (e)					
	5) Analyze terminal characteristics of of different types of DC and AC at different loading					
	conditions. (a,j)					
Important material	- Lecture notes					
	- References					
	- Internet resources					

References:

- Nagrath I. J and Kothari D. P. 'Electric Machines', Fourth Edition, Tata McGraw Hill Publishing Company Ltd, 2010.

- M.N.Bandyopadhyay, Electrical Machines Theory and Practice, PHI Learning PVT LTD., New Delhi, 2009. Major Topics Covered and Schedule in Weeks:

Торіс	# Weeks	# Contact hours*
Magnetic Fields and Magnetic Circuits.	2	6
Transformers.	3	9
Fundamentals of DC Machines.	2	6
DC Machines.	2	б
Fundamentals of AC Machines.	2	6
Synchronous Generator.	1	3
Three Phase Induction Motor.	3	9
Total	15	45

Course Policy

- If you miss class, there won't be a makeup test, quiz, etc. and you WILL get a zero unless you have a valid excuse.

- Cheating and plagiarism are completely prohibited.

- If you miss more than 15% of classes you will automatically fail the class.

Student Outcomes (SO) Addressed by the Course:

#	Outcome Description	Contribution
	General Engineering Student Outcomes	
(a)	An ability to apply knowledge of mathematics, science, and engineering	H
(b)	An ability to design and conduct experiments, as well as to analyze and interpret data	
(c)	An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability	
(d)	An ability to function on multidisciplinary teams	
(e)	An ability to identify, formulate, and solve engineering problems	H
(f)	An understanding of professional and ethical responsibility	
(g)	An ability to communicate effectively	
(h)	The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context	
(i)	a recognition of the need for, and an ability to engage in life-long learning	
(j)	A knowledge of contemporary issues	М
(k)	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	

H=High, M= Medium, L=Low